
Software Engineering

and Architecture

Concurrency

Shared Resources

Two Threads – One Account

CS@AU Henrik Bærbak Christensen 2

Forelæseren lønkonto

deposit

withdraw

PBS

OK

Two Threads – One Account

CS@AU Henrik Bærbak Christensen 3

Forelæseren lønkonto

deposit

withdraw

PBS

Not OK

Example

• I insert 200kr while PBS withdraws 100kr. The balance is

initially 50kr.

• Hopefully, the result should be 50+200-100 = 150 kr.

CS@AU Henrik Bærbak Christensen 4

public boolean withdraw(long amount){

if(amount >= 0){

 return setBalance(getBalance()-amount);

 }

 else {

 return false;

 }

 }

public boolean deposit(long amount){

if(amount >= 0){

 return setBalance(getBalance()+amount);

 }

 else {

 return false;

 }

}

Concurrent Execution

CS@AU Henrik Bærbak Christensen 5

if(amount >= 0){

 return setBalance(getBalance()-100);

 }

 else{

 return false;

 }

 }

if(amount >= 0){

 return setBalance(getBalance()+200

);

 }

 else{

 return false;

 }

setBalance(50+200 b=50

setBalance(50-100); b=-50

); b=250;

Scheduler thread switch!

Example

• The ‘System.out’ is a shared resource !

CS@AU Henrik Bærbak Christensen 6

Example: Shared Counter

CS@AU Henrik Bærbak Christensen 7Source: http://www.javacodex.com/Concurrency/AtomicInteger-Counter

Example: Shared Counter

CS@AU Henrik Bærbak Christensen 8Source: http://www.javacodex.com/Concurrency/AtomicInteger-Counter

Example: MiniDraw Animation

• ‘dirtyRectangle’ is a shared resource 

– Threads move

the boxes

– MiniDraw’s

Jframe does

the drawing

– The rectangles

are shared

resources

CS@AU Henrik Bærbak Christensen 9

Race Condition

• Race Condition:

– If multiple threads writes to resources then the outcome is

determined by the sequence/timing in which events occur.

– BAD! You have no control of the behavior of your program; and

the result is erroneous

• Inserting 200 and withdrawing 100 on balance 50 must be 150

• Our particular execution gave 250

• The next one may give -50

• Critical Section:

– The code section in which race conditions can occur

CS@AU Henrik Bærbak Christensen 10

The Solution

• Critical sections must be treated as an atomic instruction

– Da: ”Udelelig adgang”

• That is, only one thread is allowed to be executing in a

critical region at a time…

• Also called : Mutual exclusion

CS@AU Henrik Bærbak Christensen 11

The Lock

• Guard critical regions

• Example:

– Our two threads will try to invoke deposit() and withdraw()

• But our account object, a, has an ”lock” associated

– Only one thread may acquire the lock at any time!

CS@AU Henrik Bærbak Christensen 12

Lecturer

PBS
a

The ‘mutex’
or ‘semaphore’

In ‘deposit()’

CS@AU Henrik Bærbak Christensen 13

Lecturer

PBS
a

The PBS thread cannot acquire the ‘lock’

and thus start executing ‘withdraw()’. It is

simply put into a blocking state, and cannot

continue until the lock is released!

RUNNING state
BLOCKED state

Thread State

CS@AU Henrik Bærbak Christensen 14PBS

Lecturer

And next…

CS@AU Henrik Bærbak Christensen 15

Lecturer

PBS
a

Lecturer

PBS
a

Thread 1 releases
lock…

Now thread 2
can ‘withdraw()’

Monitor/Synchronized

• A Monitor is a class whose methods are all associated

with a lock/semaphore/”lysregulering”

– Not available in Java

• In Java it is more fine-grained: synchronized

• Only methods with the synchronized keyword will

respect the lock

• There is only one lock per object !!!

– Not one per method!!!

CS@AU Henrik Bærbak Christensen 16

Synchronized

• Synchronized methods = whole method is a critical sect.

• Do not make too much code a critical section!

– It slows a program down if all threads have to wait for the lock

• Rule:

– Only writing needs to be guarded

• Rule 2:

– Oh yeah – and reads of items more than N bits

• N = 16, 32, 64 - Depending upon your processor !!!

• Corollary: Reading objects must be a critical region
CS@AU Henrik Bærbak Christensen 17

Synchronized Section

• You can simply state the object you want to sync on, on a

smaller portion of the code!

CS@AU Henrik Bærbak Christensen 18

Example again:

• Exercise: What should be synchronized?

CS@AU Henrik Bærbak Christensen 19

Server Side and Client Side

• So far, the object itself has

stated its synchronization.

• Often, this is not ok.

• Consider this ATM code:

– Account.debit() is

synchronized

• What is the problem???

CS@AU Henrik Bærbak Christensen 20

long available = account.getBalance();

 if(available > 0){

 System.out.print("You have "+available+

 " available, how much do you want? ");

long amount = keyboard.nextLong();

if(amount <= 0){

 System.out.println("The amount must be positive.");

 }

 else if(amount > available){

 System.out.println("That is too much.");

 }

 else{

 // This should be ok, but ...

 if(!account.debit(amount)){

 System.out.println("The ATM debit failed!");

 }

 }

 }

Server Side and Client Side

• What is the problem???

CS@AU Henrik Bærbak Christensen 21

long available = account.getBalance();

 if(available > 0){

 System.out.print("You have "+available+

 " available, how much do you want? ");

long amount = keyboard.nextLong();

if(amount <= 0){

 System.out.println("The amount must be positive.");

 }

 else if(amount > available){

 System.out.println("That is too much.");

 }

 else{

 // This should be ok, but ...

 if(!account.debit(amount)){

 System.out.println("The ATM debit failed!");

 }

 }

 }

Client Side Synchronization

• Synchronized takes the object as parameter, thus

• synchronized(account) {

• <<<ATM code here>>>

• }

• Will solve it – it is executed atomically using the lock of

the account…

CS@AU Henrik Bærbak Christensen 22

MiniDraw Client Side Sync

• MiniDraw, by default, does not lock the

‘Drawing’ during figure manipulation, but

offers client-side synchronization via

‘locks’

CS@AU Henrik Bærbak Christensen 23

Reentrance

• Hey – did we not miss a thing here???

– Thread starts ‘deposit()’

• Acquire the lock

– Then calls ‘setBalance()’

• But the lock is taken???

• Reentrant critical sections

– If a thread ‘t’ has acquired the lock on object ‘a’, then it is free to

invoke all other synchronized methods in ‘a’

• Reentrance: The thread may reenter in locked methods

– Recursion !

CS@AU Henrik Bærbak Christensen 24

public boolean deposit(long amount){

if(amount >= 0){

 return setBalance(getBalance()+amount);

 }

 else {

 return false;

 }

}

synch

Example: MiniDraw Animation

• Treating ‘dirty rectangles’ as critical region

• Single writer

• Multi reader

CS@AU Henrik Bærbak Christensen 25

And – moving on…

Java 5

• Java 5 onwards introduced ‘java.util.concurrent’ because

the old ‘synchronized’ was way too simple…

– A lot of concurrent data structures

– An fine-grained ‘synchronized’ object: Lock

CS@AU Henrik Bærbak Christensen 27

ReentrantLock

• Instead of ‘synchronized’ on incrementCount()

• Note:

– Explicit

lock

object!

– Not on

‘this’…

• Can have

more locks

in play in same object!

CS@AU Henrik Bærbak Christensen 28

The idiom

• Or

– tryLock(100 ms)

– Will time out waiting

to get the lock

– Avoid indefinite waiting

for a lock that a frozen

thread has taken!

• Liability

– Code readability suffers greatly!

– Some day you will forget the finally clause 

CS@AU Henrik Bærbak Christensen 29

lock.lock();
try {
 // critical region
} finally {
 lock.unlock();
}

Deadlocks

Availability AntiPattern:

Blocked Threads

Deadlock

• Deadlock

– A thread waits infinitely for an event that will never happen

• That is

– T1, is in synchronized method in A, call sync. method in B

– T2, has acquired lock on B, and waits for lock on C

– …

– T4 waits for lock on A – which T1 has !

• Result

– Utterly nothing!!!

CS@AU Henrik Bærbak Christensen 31

A Classic

• Edger Dijkstra, 1965: Dining Philosophers Problem

– Eat or think

– To eat you need two forks

• Design an algorithm that does

not deadlock…

CS@AU Henrik Bærbak Christensen 32

[By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=56559]

The General Rules of Thumb

• Always acquire the locks in the same order

– Example: A, then B, then C

• Only works if you know the order

ahead of time

• Use timeouts on locks

– If timeout: free all locks, wait, and retry…

CS@AU Henrik Bærbak Christensen 33

Note – does not work for the
Philosophers!

