/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Concurrency
Shared Resources

eV Two Threads — One Account

AARHUS UNIVERSITET

wn

Forelaseren lenkonto PB
|

deposit

A\ 4

A

withdraw

»
>

A

OK

CS@AU Henrik Baerbak Christensen 2

eV Two Threads — One Account

AARHUS UNIVERSITET

wn

Forelaseren lenkonto PB

|
deposit ‘r

withdraw

NOot OK

CS@AU Henrik Baerbak Christensen 3

/v Example

AARHUS UNIVERSITET

* | Insert 200kr while PBS withdraws 100kr. The balance is
initially 50Kkr.

public boolean deposit(long amount){ public boolean withdraw(long amount) {
if(amount >= 0){ if(amount >= 0){
return setBalance(getBalance()+amount); return setBalance(getBalance()-amount);
} }
else { else {
return false; return false;
} }
} 3

« Hopefully, the result should be 50+200-100 = 150 kr.

eV Concurrent Execution

AARHUS UNIVERSITET

if(amount >= 0){ = c—— ~

return setBalance(getBalance()+200

if(amount >= 0){ —
return setBalance(getBalance()-100); /

- - - ¥ = = -
/ else{
I return false;
}
()
/X; setBalance(50+200 b=50
setBalance(50-100); b=-50

return false; s
h

CS@AU Henrik Baerbak Christensen 5

/v Example

AARHUS UNIVERSITET
 The ‘System.out’ is a shared resource !

PS D:‘\work'teaching\SWEA-E17%codelab‘threads‘thread-demol> java ThreadDemo
Maaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbhb
gbbbhb

PS D:‘\work\teaching\SWEA-E17\codelab‘\threads\thread-demol> java ThreadDemo

aaaaaaaaaaaaaaaaaaaaaaaaaaaababbbbbbbbbbbbbbbbbbbbbbbbaabbbbbaaabbbbbbbbbbbbbbbb
baaaaabbaaaaaaaaaaaaaaaaaaaaabbb

PS D:‘\work\teaching\SWEA-E17%\codelab‘\threads‘\thread-demol> java ThreadDemo
Aaaaaaaaaaaadaaaaddadaaaaaaaaaadaasddaaaaaaaaaaaadaaaasaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaabaaabbb
bb

PS D:‘\work\teaching\SWEA-E17%codelab‘\threads‘\thread-demol>

CS@AU Henrik Baerbak Christensen 6

o Example: Shared Counter

A A wma o B OEL B AN s g o e ——

/public class CounterTest {

public static vold main(3tring[] args) throws InterruptedException {

final Counter counter = new Counter():

/f create 1000 threads

class Counter {
private Integer count = new Integer (0}

public void incrementCount () {
count++;

}

pukblic int getCount () {
return count;

Arravliszt<MyThread> threads = new ArravList<MyThread>(): ¥

for (int x = 0; X < 1000; =++) {
threads.add (new MyThread (counter)):

S =tart all of the threads
Iterator il = threads.iterator():
while (il.hasHext()) {
MyThread mt = [(MyThread) il.next();
mt.startc() s

/f wait for all the threads to finish

Iterator i2 = threads.iterator(): }

wnile (i2.haslext()) { }
MyThread mt = [(MyThread) 12.next(); }
mt.join():

}

System.out.println {"Count i " 4+ counter.getCount()):

Syztem.out.println("Expected: ™ + 1000 * 10000);

S thread that increments the counter 10.000 times.
class MyThread extends Thread {
Counter counter;

MyThread (Counter counter) {
this=s.counter = counter;
}
public volid run() {
for (int = = 0y =% < 10000; x++) {
counter.incrementCount () ;

Source: http://www.javacodex.com/Concurrency/Atomiclnteger-Counter 7

- Example: Shared Counter

A A mmr EE Em B EL B RN s g s § e ——

/public class CounterTest { class Counter {

private Integer count = new Integer (0}

public static vold main(3tring[] args) throws InterruptedException {

incrementCount ()} {

final Counter counter

getCount () {

// create 1000 thread:s ant:

Arravlist<MyThread> tI
for (imt Xx = 0; X < 1C

threads.add (new Myl
ter 10.000 times.

S =tart all of the tI
Iterator il = threadsJ§
while (il.hasHext()) 4
MyThread mt = [(MyThread) il.next(): this.counter = counter;
mt.start () }

// wait for all the threads to finist

Iterator i2 = threads.iterator():
while (i2.hasHext()) {
MyThread mt = [(MyThread) 12.next()
mt.join():
}
System.out.println ("Count "+ co

Source: http://www.javacodex.com/Concurrency/Atomicinteger-Counter Sligesicy 8

/v Example: MiniDraw Animation

AARHUS UNIVERSITET
« ‘dirtyRectangle’ is a shared resource ®

— Threads move P show Animation. Click to animate boxes ...
the boxes

— MiniDraw’s
Jframe does
the drawing

— The rectangles
are shared
resources

CS@AU

eV, Race Condition

AARHUS UNIVERSITET

* Race Condition:
— If multiple threads writes to resources then the outcome is
determined by the sequence/timing in which events occur.

— BAD! You have no control of the behavior of your program; and

the result Is erroneous
* Inserting 200 and withdrawing 100 on balance 50 must be 150

« Our particular execution gave 250
« The next one may give -50

CS@AU Henrik Beerbak Christensen 10

VeV The Solution

AARHUS UNIVERSITET

* Critical sections must be treated as an atomic instruction
— Da: "Udelelig adgang”

« Thatis, only one thread is allowed to be executing in a
critical region at a time...

 Also called : Mutual exclusion

VeV The Lock

AARHUS UNIVERSITET
« Guard critical regions

 Example:
— Our two threads will try to invoke deposit() and withdraw()

« But our account object, a, has an "lock” associated
— Only one thread may acquire the lock at any time!

Lecturer

|

The ‘mutex’

or ‘semaphore’

CS@AU Henrik Baerbak Christensen

12

/v In ‘deposit()’

AARHUS UNIVERSITET

Lecturer

PBS

RUNNING state

BLOCKED state

CS@AU Henrik Beerbak Christensen 13

b Thread State

AARHUS UNIVERSITET

state machine Thread States {protocol})

/ Runnable thread was selected by

thread scheduler jpsre Lectu re r-

t.start/ thread terminated/

thread was suspended
_ by thread scheduler/

_ Thread.sleep(sleeptime)/ { \ sleeptime elapsed/

o.wait(timaout)/ thread terminated/ /

tjoin{timeout)/
Timed Waiting | o_notifyAll/

LockSupport.parkNanos()/
—= o.notify/ N\
rokSuppo rt.parkUntil{)/ ~,

N O-wait/ thread terminated/ _/

tjoin/ L o.notifyAllf
Waiting —
\ LockSupport.park/ o.notify/ \\

wait for lock to enter
chhm block or meth / /

wait for lock to reente‘ Blocked monifor lock acquired/ /)
\synchro block or methdd | thread terminated/ /

CS@AU p DR 14

aS—

eV And next...

AARHUS UNIVERSITET

Lecturer

Thread 1 releases
lock...

Lecturer
- - _a__'____> Now thread 2
P ey — — > can ‘withdraw()’

CS@AU Henrik Beerbak Christensen 15

/v Monitor/Synchronized

AARHUS UNIVERSITET

A Monitor Is a class whose methods are all associated
with a lock/semaphore/’lysregulering”
— Not available in Java

* In Java it is more fine-grained: synchronized

* Only methods with the synchronized keyword will
respect the lock

 Thereis onlyjone lock per object !!!
— Not one per methoa!!!

CS@AU Henrik Baerbak Christensen 16

Y Synchronized

AARHUS UNIVERSITET
« Synchronized methods = whole method is a critical sect.

pukblic =ynchronized wvoid add(int walue) {
this.count += wvalue;

Do not make too much code a critical section!
— It slows a program down if all threads have to wait for the lock

* Rule:
— Only writing needs to be guarded

* Rule 2:

— Oh yeah — and reads of items more than N bits
« N=16, 32,64 - Depending upon your processor !!!

« Corollary: Reading objects must be a critical region
CS@AU Henrik Baerbak Christensen 17

/v Synchronized Section

AARHUS UNIVERSITET

* You can simply state the object you want to sync on, on a
smaller portion of the code!

public void add(int wvalue){

synchronized (this) {
this.count += walue;

o}

/v

Example again:
AARHUS UNIVERSITET

« Exercise: What should be synchronized?

class Counter

private Integer count = new Integer (0}
public void incrementCount () {

count++;
X

public int getCount() 1
return count;
X
H

CS@AU

Henrik Baerbak Christensen

19

VeV Server Side and Client Side

AARHUS UNIVERSITET
o S0 far, the object itSEIf NAS rey & gp o sematienceos
stated its synchronization. e e et
« Often, this Is not ok. T i = kil ot
System.out.printin("The amount must be positive.™);
« Consider this ATM code: Vi cuma > b

System.out.printin("That is too much.");

— Account.debit() is)
synchronized elsef
// This should be ok, but ...
if(laccount.debit(amount)){

. System.out.printin("The ATM debit failed!");
« What is the problem???)

VeV Server Side and Client Side

AARHUS UNIVERSITET
Tong available = account.getBalance(Q);
if(available > 0){
. System.out.print("You have "+available+
° What IS the prObIem??? " available, how much do you want? ");
Tong amount = keyboard.nextLong(Q);
if(amount <= 0){
System.out.printin("The amount must be positive.");
}
else if(amount > available){

System.out.printin("That is too much.");

}
else{
// This should be ok, but ...
if(!account.debit(amount)){
System.out.printin("The ATM debit failed!");
}
}

CS@AU Henrik Baerbak Christensen 21

/v Client Side Synchronization

AARHUS UNIVERSITET
« Synchronized takes the object as parameter, thus

synchronized(account) {
<<<ATM code here>>>

Will solve it — it is executed atomically using the lock of
the account...

/v MiniDraw Client Side Sync

AARHUS UNIVERSITET

« MiniDraw, by default, does not lock the
‘Drawing’ during figure manipulation, but
offers client-side synchronization via
‘locks’

public void vupdateStats() {
writelock().vlock();
try {
attackText.setText("" + associatedCard.getAttack());
healthText.setText("" + associatedCard.getHealth());
} finally {
writeLock() .unlock();
}
}

CS@AU Henrik Baerbak Christensen

23

/v Reentrance

AARHUS UNIVERSITET
 Hey — did we not miss a thing here???
— Thread starts ‘depOSit(), pubTic boolean deposit(long amount){
« Acquire the lock if(amount >= 0){
Then calls ‘SetBaIance()’ return setBalance(getBalance()+amount);
- }

 But the lock is taken??? else {

return false;
3
}

* Reentrant critical sections

— If a thread ‘t’ has acquired the lock on object ‘a’, then it is free to
invoke all other synchronized methods in ‘a’
 Reentrance: The thread may reenter in locked methods
— Recursion'!
CS@AU Henrik Baerbak Christensen 24

/v Example: MiniDraw Animation

AARHUS UNIVERSITET
« Treating ‘dirty rectangles’ as critical region

)

« Single writer

 Multi reader

CS@AU

/v

AARHUS UNIVERSITET

And — moving on...

VeV Java b5

AARHUS UNIVERSITET

« Java 5 onwards introduced ‘java.util.concurrent’ because

the old ‘synchronized’ was way too simple...
— Alot of concurrent data structures

— An fine-grained ‘synchronized’ object: I Lock]

Main Differences Between Locks and Synchronized Blocks

The main differences between a r.ock and a synchronized block are:

» A synchronized block makes no guarantees about the sequence in which threads waiting to
entering it are granted access.

* You cannot pass any parameters to the entry of a synchronized block. Thus, having a timeout
trying to get access to a synchronized block is not possible.

« The synchronized block must be fully contained within a single method. A 1cck can have it's
calls to 1ock() and unleck() In separate methods.

CS@AU Henrik Baerbak Christensen

27

eV ReentrantLock

AARHUS UNIVERSITET
 Instead of ‘synchronized’ on incrementCount()

class Counter {
. private int count = 0;
* Note: private final ReentrantlLock lock = new ReentrantLock();
- EXpIICIt public void incrementCount() {
lock lock.lock();
iact! try {
ObjeCt' count++;
— Not on } finally { lock.unlock(); }
‘ L }
this’...

public int getCount() {

e Can have return count:

more locks } }

In play in same object!

CS@AU Henrik Baerbak Christensen 28

/v The idiom

AARHUS UNIVERSITET
 Or
— tryLock(100 ms) lock.lock();
— Will time out waiting try {
to get the lock // critical region

— Avoid indefinite waiting } finally {

for a lock that a frozen .
thread has taken! lock.unlock();

 Liability
— Code readability suffers greatly!
— Some day you will forget the finally clause &

/v

AARHUS UNIVERSITET

Deadlocks

Avallability AntiPattern:
Blocked Threads

eV Deadlock

AARHUS UNIVERSITET

e Thatis

— T1, is in synchronized method in A, call sync. method in B
— T2, has acquired lock on B, and waits for lock on C

— T4 waits for lock on A—which T1 has !

° Result Thread 1 locks
_ Thread 2 locks

— Utterly nothing!!! Thread 3 locks
Thread 4 locks

CS@AU Henrik Baerbak Christensen

(e I v R =

-

L

-

-

walts
waits
walts
waits

for
for
for
for

= 0w

/v A Classic

AARHUS UNIVERSITET

« Edger Dijkstra, 1965: Dining Philosophers Problem
— Eat or think
— To eat you need two forks

not deadlock...

[By Benjamin D. Esham / Wikimedia Commons, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=56559]

CS@AU Henrik Baerbak Christensen 32

/v The General Rules of Thumb

AARHUS UNIVERSITET

» Always acquire the locks in the same order
— Example: A, then B, then C

Thread 1:

lock A

Note — does not work for the lock B

Philosophers!

Thread 2:

wait for A&
lock C (when A locked)

* Only works if you know the order
ahead of time wait for 2

wait for B
wait for C

 Use timeouts on locks
— Iftimeout: free all locks, wait, and retry...

CS@AU Henrik Baerbak Christensen 33

